
Blueprint for the Intercloud –

Protocols and Formats for Cloud Computing Interoperability

David Bernstein Erik Ludvigson Krishna Sankar Steve Diamond Monique Morrow

Cisco Systems, Inc.
[daberns, eludvigs, ksankar, stdiamon, mmorrow]@cisco.com

As Accepted for Presentation and Publication to

The Fourth International Conference on Internet and Web

Applications and Services

ICIW 2009

May 24-28, 2009 - Venice, Italy

Blueprint for the Intercloud –

Protocols and Formats for Cloud Computing Interoperability

David Bernstein Erik Ludvigson Krishna Sankar Steve Diamond Monique Morrow

Cisco Systems, Inc.
[daberns, eludvigs, ksankar, stdiamon, mmorrow]@cisco.com

Abstract

Cloud Computing is a term applied to large, hosted

datacenters, usually geographically distributed, which

offer various computational services on a “utility” basis.

Most typically the configuration and provisioning of

these datacenters, as far as the services for the

subscribers go, is highly automated, to the point of the

service being delivered within seconds of the subscriber

request. Additionally, the datacenters typically use

hypervisor based virtualization as a technique to deliver

these services. The concept of a cloud operated by one

service provider or enterprise interoperating with a

clouds operated by another is a powerful idea. So far

that is limited to use cases where code running on one

cloud explicitly references a service on another cloud.

There is no implicit and transparent interoperability.

Use cases for interoperability, as well as work-in-

progress around inter-cloud protocols and formats for

enabling those use cases, are discussed in this paper.

1. Introduction

Cloud Computing has emerged recently as a label for a

particular type of datacenter. A cloud may be hosted by

anyone; an enterprise, a service provider, or a

government.

Figure 1. A Cloud is just a special kind of

datacenter. We list seven key characteristics which
make a large datacenter into a cloud.

For the purposes of this paper, we define Cloud

Computing as a datacenter which:

1. Implements a pool of computing resources and

services which are shared amongst subscribers.

2. Charges for resources and services using an “as

used” metered and/or capacity based model.

3. Are usually geographically distributed, in a manner

which is transparent to the subscriber (unless they

explicitly ask for visibility of that).

Figure 2. Clouds may be in one geography or may

spread over several geographies

4. Are automated in that the provisioning and

configuration (and de-configuration and un-

provisioning) of resources and services occur on the

“self service”, usually programmatic request of the

subscriber, occur in an automated way with no

human operator assistance, and are delivered in one

or two orders of seconds.

5. Resources and services are delivered virtually, that

is, although they may appear to be physical (servers,

disks, network segments, etc) they are actually

virtual implementations of those on an underlying

physical infrastructure which the subscriber never

sees.

6. The physical infrastructure changes rarely. The

virtually delivered resources and services are

changing constantly.

7. Resources and services may be of a physical

metaphor (servers, disks, network segments, etc) or

they may be of an abstract metaphor (blob storage

functions, message queue functions, email functions,

multicast functions, etc). These may be intermixed.

Cloud Computing services as defined above are best

exemplified by the Amazon Web Services (AWS) [1][2]

or Google AppEngine [3][4]. Both of these systems

exhibit all eight characteristics as detailed above.

Various companies are beginning to offer similar

services, such as the Microsoft Azure Service [5], and

software companies such as VMware [6] and open

source projects such as UCSB Eucalyptus [7][8] are

creating software for building a cloud service. Each of

these offerings embody Cloud Computing with a self-

contained set of conventions, file formats, and

programmer interfaces. If one wants to utilize that

variation of cloud, one must create configurations and

code specific to that cloud.

Of course from within one cloud, explicit instructions

can be issued over the Internet to another cloud. For

example, code executing within Google AppEngine can

also reference storage residing on AWS. However there

are no implicit ways that clouds resources and services

can be exported or caused to interoperate.

Our work in progress examines this challenge. First

we present some simple use cases and highlight the

roadblocks for making that use case work. Next we

detail the areas of protocols and formats which need to

be developed and standardized to solve not only the

specific use cases but we believe many additional use

cases. Finally within each area of protocol and format,

we detail specific technologies which we believe show

promise as a solution or a basis for a solution and speak

to the how that technology is applies to cloud computing

interoperability.

We are calling this profile of protocols and formats

for Cloud Computing interoperability the “Intercloud

Protocols”.

 We consider code portability and common APIs

amongst clouds as important but of a different scope,

and not addressed in this paper.

2. Use Cases

We outline use cases which cover the two basic

natures of Cloud Computing delivered resources and

services; that is a use case involving a physical

metaphor (servers, disks, network segments, etc) and a

use case involving an abstract metaphor (blob storage

functions, message queue, email functions, multicast

functions, etc).

Figure 3. We look at cloud interoperability

challenges using use cases illustrating the two
major personality types of clouds

2.1. Virtual Machine Instantiation and

Mobility

One of the most basic resources which Cloud

Computing delivers is the Virtual Machine, which is a

physical metaphor type of resource. One way or another,

a subscriber requests the provisioning of a particularly

configured virtual machine with certain quantities of

resources such as memory processor speeds and

quantities.. The format of this request varies widely by

Cloud Computing platform and also is somewhat

specific to the type of hypervisor (the virtualization

layer of the operating system inside the Cloud

Computing platform). In a few seconds they receive

pointers and credentials with which to access it. The

pointers are usually the MAC and IP addresses [9] and

sometimes a DNS name [10] given to the VM. The

credentials are usually a pair of RSA keys [11] (a public

key and a private key, which one uses in the API to

speak with the VM). Most often, the VM presents an

x86 PC machine architecture [12]. On that VM, one

boots a system image yielding a running system, and

uses it in a similar manner as one would use a running

system in your own datacenter.

VM Mobility is that feature in a particular hypervisor

which allows a running system to be moved from one

VM to another VM. As far as the running system is

concerned it does not need to be reconfigured, all of the

elements such as MAC and IP address and DNS name

stay the same; any of the ways storage may be

referenced (such as a World Wide Name in a SAN [13])

stay the same. Whatever needs to happen to make this

work is not the concern of the running system.

VM Mobility has been implemented with several

hypervisors but there are limitations. Usually these

limitations are a result of the “scope” of applicability of

the network and storage addressing. Typically, VM

Mobility is restricted to a Layer 3 subnet [14] and a

Layer 2 domain (for VLANs) [15] because the

underlying network will support the VM operating

outside of the local scope of those addresses. Needless

to say, the network addressing scheme in a cloud

operated by an entirely different service provider is not

only a different subnet but a different class B or class A

network altogether. Routers and switches simply would

not know how to cope with the “rogue” running system.

Another aspect is that, the instantiation instructions

of the VM for the running system are very specific to

that Cloud Computing platform and the hypervisor

which it uses. We would want to re-issue some of these

instructions to the new Cloud so that the VM it

delivered onto which the VM would move, was as

suitable as the first VM which was provisioned for us. If

the new Cloud takes an entirely different set of

instructions, this is another barrier to VM Mobility.

All of this assumed that in the universe of Cloud

Computing systems out there, I was able to find another

cloud, which was ready, willing, and able to accept a

VM mobility transaction with me. And that I was able to

have a reliable conversation with that cloud, perhaps

exchanging whatever subscription or usage related

information which might have been needed as a pre-

cursor to the transaction, and finally that I had a reliable

transport on which to move the VM itself.

2.2. Storage Interoperability and Federation

No let us consider an interoperability use case

involving an abstract metaphor. In this case, I am

running script or code in my datacenter or in the cloud,

which is utilizing Cloud based storage functions. In

Cloud Computing, storage is not like disk access, there

are several parameters around the storage which are

inherent to the system, and one decides if they meet

your needs or not For example, object storage is

typically replicated to several places in the cloud, In

AWS and in Azure it is replicated three places. The

storage API is such that, a write will return as successful

when one replicate of the storage has been effected, and

then a “lazy” internal algorithm is used to replicate the

object to two additional places. If one or two of the

object replicates are lost the cloud platform will

replicate it to another place or two such that it is now in

three places. A user has some control over where the

storage is, physically, for example, one can restrict the

storage to replicate entirely in North America or in

Europe. There is no ability to vary from these

parameters; that is what the storage system provides. We

do envision other providers implementing say, five

replicates, or a deterministic replication algorithm, or a

replicated (DR) write which doesn’t return until and

unless n replicates are persisted. One can create a large

number of variations around “quality of storage” for

Cloud.

In the interoperability scenario, suppose AWS is

running short of storage, or wants to provide a

geographic storage location for an AWS customer,

where AWS does not have a datacenter, it would be sub-

contracting the storage to another service provider. In

either of these scenarios, AWS would need to find

another cloud, which was ready, willing, and able to

accept a storage subcontracting transaction with them.

AWS would have to be able to have a reliable

conversation with that cloud, again exchanging

whatever subscription or usage related information

which might have been needed as a pre-cursor to the

transaction, and finally have a reliable transport on

which to move the storage itself. Note, the S3 storage

API is not guaranteed to succeed, if there is a failed

write operation from AWS to a subscriber request, the

subscriber code is supposed to deal with that (perhaps,

via an application code level retry). However Cloud to

Cloud, a target cloud write failing is not something the

subscriber code can take care of. That needs to be

reliable.

Although the addressing issues are not as severe in

this case where an abstract metaphor is used, the naming,

discovery, conversation setup items challenges all

remain.

3. Intercloud Protocols Profile

To address interoperability use cases such as these,

certain commonalities amongst clouds must be adopted.

With the Internet, interoperability foundations were set

with the basics of IP addressing, DNS, exchange and

routing protocols such as BGP [16], OSPF [17], and

peering conventions using AS [18] numbering. Clearly,

analogous areas in Cloud Computing need to

investigated and similar technologies, but for computing,

need to be invented.

Our research involves a lab where we have

constructed clouds of primarily two kinds, one using

hypervisors from VMware and the associated tooling

and conventions that are associated with that set of

products, and another using open source hypervisors

such as Xen and KVM from RedHat, and the associated

tooling and conventions (Linux, and AWS-like) that are

associated with that set of products. We are

investigating and prototyping protocols, and formats,

and common mechanisms, which implement cloud

interoperability, or for brevity, Intercloud.

We call the protocols and formats, collectively,

“Intercloud Protocols”. We call the common

mechanisms, collectively, an “Intercloud Root”. Figure

4 shows the areas that we believe form a relatively

complete picture of the domain of cloud standards.

Figure 4. An Architecture for Intercloud Standards

The remainder of the paper describes each area we

are investigating. We do not speak to every area, but to

the ones needed to address the use cases which were

described. First we speak to the nature of the

interoperability challenge in each area, then we detail

the candidate techniques for Intercloud Protocols and

Root which we are looking into. At the end we put them

together into a sequence showing how each standard is

used to accomplish the interoperability goal of that use

case.

3. Addressing

Interestingly, one area which imposes major

challenges is network addressing. In a highly virtualized

environment, IP address space explodes. Everything has

multiple IP addresses; servers have IP addresses for

management, for the physical NICs, for all of the virtual

machines and the virtual NIC therein, and if any virtual

appliances are installed they have multiple IP addresses

as well.

Several areas are of concern here, on the one hand,

the IPv4 address space simply starts to run out. Consider

an environment inside the Cloud which has 1M actual

servers. As explained above, assuming a 16 core server,

each server could have 32 VM’s, and each VM could

have a handful of IP addresses associated with it (virtual

NICs, etc). That could easily explode to a Cloud with

well over 32M IP addresses. Even using Network

Address Translation (NAT) [14], the 24-bit Class A

reserved Private Network Range provides a total address

space of only 16M unique IP addresses!

For this reason many Cloud operators are considering

switching to IPv6 which provides for a much larger

local address space [19] in the trillions of unique IP

addresses. Switching to IPv6 is quite an undertaking,

and some believe that switching from one static

addressing scheme to another static addressing scheme

(eg IPv4 to IPv6) might not be the right approach in a

large highly virtualized environment such as Cloud

Computing. If one is reconsidering addressing, one

should consider the Mobility aspects of VMs in Cloud.

What becomes obvious in this discussion is that some

cloud builders will use IPv4, and some will use IPv6. Is

there a common IP Mobility scheme between the two?

3.1. IP Mobility

VM Mobility provides for new challenges in any

static addressing scheme. When one moves a running

VM from one location to another, the IP address goes

with the running VM and any application runtimes

hosted by the VM. IP addresses (of either traditional

type) embody both Location and Identity in the IP

address, eg, routers and switches use the form of the IP

address not only to identify uniquely the endpoint, but

by virtual of decoding the address, infer the Location of

the endpoint (and how to reach that endpoint using

switching and routing protocols). So while an

addressing scheme is being reconsidered, let’s consider

two schemes which embody Mobility.

Mobile IPv4 [20] and Mobile IPv6 [21][22][23]

mechanisms can be used in this case, but they are not

interoperable. Because we are trying to solve the

problem from one cloud to another, we need a protocol

which has a common, interoperable mobility scheme

which can be mapped/encapsulated in both IPv4 and

IPv6.

3.2. Location Identity Separation Protocol

In an attempt to completely generalize the addressing

solution in a way that interoperates with both IPv4 and

IPv6, a completely dynamic scheme where Location and

Identification have been separated has been developed.

This new scheme is called Location Identity Separation

Protocol (LISP) [24]. LISP based systems can interwork

with both IPv4 and IPv6 based networks, through

protocol support on edge routers. However, internal to a

Cloud, which may in itself span several geographies,

LISP addressing may be used.

The basic idea behind the Loc/ID split is that the

current Internet routing and addressing architecture

combines two functions: Routing Locators (RLOCs),

which describe how a device is attached to the network,

and Endpoint Identifiers (EIDs), which define “who” the

device is, in a single numbering space, the IP address.

Proponents of the Loc/ID split argue that this

“overloading” of functions places the constraints on

end-system use of addresses that we detailed. Splitting

these functions apart by using different numbering

spaces for EIDs and RLOCs yields several advantages,

including improved scalability of the routing system

through greater aggregation of RLOCs. To achieve this

aggregation, we must allocate RLOCs in a way that is

congruent with the topology of the network. EIDs, on

the other hand, are typically allocated along

organizational boundaries.

Because the network topology and organizational

hierarchies are rarely congruent, it is difficult (if not

impossible) to make a single numbering space

efficiently serve both purposes without imposing

unacceptable constraints (such as requiring renumbering

upon provider changes) on the use of that space. LISP,

as a specific instance of the Loc/ID split, aims to

decouple location and identity. This decoupling will

facilitate improved aggregation of the RLOC space,

implement persistent identity in the EID space, and

hopefully increase the security and efficiency of

network mobility.

To this end current experimentation is being done to

assess the viability of using this protocol in conjunction

with virtualization and in particular with VM Mobility.

Of course, if and when LISP becomes a proven solution

for the Cloud scenario, it must propagate into many

forms of networking equipment which will take some

time.

4. Naming, Identity, Trust

Clouds are not endpoints, in the way servers or

clients are. They are resources, and as such are typically

identified using a URI [25]. However, a simple name

lookup allowing one to access a URI over the Internet is

not sufficient for Cloud Computing, we would like to

for example have assurance that this is indeed the

service we think it is, more detail about what service

levels, capabilities, and requirements this service may

offer, and since we are using something outside of our

local trust domain, perhaps have some audit capabilities.

We are looking at something which, like DNS can be

part of an Intercloud Root, and can also be part of a

Cloud Computing instance. In addition to DNS-like

capabilities, we would like a rich capability for

expressing names and services, like a directory service

such as LDAP [26] or Active Directory [27]. We would

also like a system which allows clouds communicating

over a non-secure network to prove their identity to one

another in a secure manner, such as Kerberos [28]. Also,

we would like a system which can supply trusted

security certificates, such as the X.509 [29] which

provides for a public key infrastructure (PKI) for single

sign-on and Privilege Management Infrastructure (PMI).

X.509 specifies, amongst other things, standard formats

for public key certificates, certificate revocation lists,

attribute certificates, and a certification path validation

algorithm.

4.1. IPA

We have been investigating using IPA [30]. IPA is an

integrated security information management solution

combining an open LDAP directory Server, MIT

Kerberos and a X.509 Certificate Authority. IPA

provides the functions of:

 Identity (machine, user, virtual machines, groups,

authentication credentials)

 Policy (configuration settings, access control)

 Audit (events, logs, analysis thereof)

In IPA one user ID is shared between LDAP and

Kerberos, and Kerberos gets the benefit of the directory

server’s multimaster replication. IPA provides an XML

over RPC interface to allow for automation and self

service with Cloud infrastructure. IPA is a centralized

authentication point which tracks what persons or

services logged onto what and when.

Services mutually authenticate and encrypt with

Kerberos. DNS and Certificate Authority are currently

being integrated into IPA.

From our perspective IPA is a leading candidate for

this function in Cloud implementations as well as in the

Intercloud Root.

5. Presence and Messaging

Part of interoperability is, that cloud instances must

be able to dialog with each other. As the use cases

explained, one cloud must be able to find another cloud,

which for a particular interoperability scenarios, is ready,

willing, and able to accept an interoperability

transaction with and furthermore, exchanging whatever

subscription or usage related information which might

have been needed as a pre-cursor to the transaction.

Thus, an Intercloud Protocol for presence and

messaging needs to exist.

5.1 XMPP

Extensible Messaging and Presence Protocol

(XMPP) [31][32] is exactly such a protocol. XMPP is a

set of open XML technologies for presence and real-

time communication developed by the Jabber open-

source community in 1999, formalized by the IETF in

2002-2004, continuously extended through the standards

process of the XMPP Standards Foundation. XMPP

supports presence, structured conversation, lightweight

middleware, content syndication, and generalized

routing of XML data.

We are experimenting with using XMPP as a control

plane presence and dialog protocol for Intercloud.

XMPP root servers for this purpose, would be in the

Intercloud Root.

6. Virtual Machines

Most Cloud Computing implementations have a

capability to deliver a Virtual Machine “on demand” to

a subscriber, who requests the provisioning of a

particularly configured virtual machine with certain

quantities of resources. At that point the Virtual

Machine is “booted” with an image (or via instructions)

to result in a running system.

The metadata which specifies the image or the

system is a crucial abstraction which is at the center of

VM interoperability, a key feature for Intercloud. One

would like to see an open, secure, portable, efficient,

and flexible format for the packaging and distribution of

one or more virtual machines to this end.

6.1. Virt-Image

One approach to this is called virt-image [33], which

relies on an XML descriptor to create virtual machines

from virtual machine images. In general, a virtual

machine image consists of the XML descriptor (usually

in a file image.xml) and a number of files for the virtual

machine's disks. The virt-image tool defines a simple

XML format which can be used to describe a virtual

appliance. It specifies things like minimum

recommended RAM and VCPUs, the disks associated

with the appliance, and the hypervisor requirements for

booting it.

This is quite interesting, however the resultant XML

format is describing a specific deployment of a virtual

machine on a specific hypervisor. For more general

interoperability, we have turned to another proposed

standard.

6.2. OVF

Open Virtualization Format (OVF) [34] is a platform

independent, efficient, extensible, and open packaging

and distribution format for virtual machines. OVF is

virtualization platform neutral, while also enabling

platform-specific enhancements to be captured. Even

though VMware was the original creator of OVF, there

is also an Open-source library and tools to support it

[35].

There is much work to do in this area. AWS for

example, support their own format called an Amazon

Machine Image (AMI), for example, and although the

Xen community has worked on OVF the KVM

community is just starting to. We are encouraged by the

possibility of convergence of this space on OVF by the

recent open source conversion utilities such as Thincrust

virt-convert [36] which are a proof point that VM meta-

data for instantiation and for mobility can be solved

eventually.

6.3 Lib Virt

Once you package a VM for deployment, you must

be able to talk to the VM to control them (for Mobility,

for example). Most virtualization systems do not allow

for direct communication to the VM, rather, they

provide API’s to their management toolsets. For

example, this is the case with VMware. One speaks

through an API to a client side intermediary or to the

management tool [37]. In order to complete the

interoperability picture with VM manageability, we are

impressed with the libvirt [38] project. Libvirt supports

features such as remote management using encryption

and X.509 certificates, remote management

authenticating with Kerberos, discovery using DNS, and

management of virtual machines, virtual networks and

storage.

We believe that this area is ripe for early

standardization.

7. Multicast

Although our use cases don’t require it, an area of

particular interest is where applications running on

clouds are rich media enabled, or are collaboration

applications. Application enabling large numbers of

people to work together and are audio and video enabled

are exciting applications for Cloud Computing.

Augmentation of social applications such as Facebook

and MySpace with rich media, multi-point collaboration

is an challenge to the infrastructure which supports them.

It is well known that massive scale, real-time, multi-

point applications such as those are well served by IP

Multicast [39].

7.1. IP Multicast, Interdomain IP Multicast

IP Multicast is a well understood technology.

However, most service provider infrastructures do not

currently allow one to transit IP Multicast on their

networks, as it is very demanding on their routers.

Within a Cloud Computing environment, we see this as

a crucial element for Intercloud, in that applications

which want to use API’s which ultimately will use IP

Multicast for implementation must be supported.

 More importantly, for these types of applications to

work in an Intercloud context, IP Multicast must work

in between and amongst clouds. This is requires

Interdomain IP Multicast [40][41].

7.2. LISP IP Multicast

Further complicating the matter, if a LISP addressing

scheme has been adopted, as discussed above, a LISP-

enabled Multicasting architecture would need to be

implemented. Cisco has active work in this area [42]

which we expect to be extremely important as

Intercloud based media rich, collaboration applications

are to broadly work.

8. Time Synchronization

Depending on the applications, time synchronization

may not be very important. Network Time Protocol

(NTP) [43] may be sufficient for Cloud Computing

instances in terms of keeping accurate time, and in

synchronizing the distributed computing elements in the

Cloud accurately. However, our research has shown

considerable clock drift in a distributed system and

applications which depend on accurate time will not

return correct results or in some cases, function

incorrectly.

8.1. IEEE1588

Precision time synchronization will likely be an

important aspect of Cloud Computing. We have spent

considerable time on a precision time capability called

IEEE 1588 [44][45][46].

In the context of Cloud Computing there is nothing

additional for industry to do here, except perhaps to

realize that Intercloud Protocol capability may rely on

having precision timing in the Cloud. It is a

consideration of ours that the Intercloud Root may be a

source for this time synchronization in the IEEE 1588

format as well.

9. Reliable Application Transport

Using XMPP for control plane information is

sufficient. However, when services need to move

payloads in a transactional manner, like exchanging

business records, customer data, critical storage blocks,

or anything which requires a reliable, transactional

application transport, a different mechanism is required.

Applications needing this functionality have

traditionally turned to MQseries from IBM, JMS from

BEA Weblogic or other J2EE provider, or the The

Information Bus from TIBCO. In the Cloud Computing

world, AWS includes a service called SQS. None of the

applications message bus technologies interoperate as

their on-the-wire formats are all different.

9.1. AMQP based message bus

We have been working on an interoperable message

queue standard called Advanced Message Queuing

Protocol (AMQP) [47]. AMQP is an open standard

application layer protocol for Message Oriented

Middleware. The defining features of AMQP are

message orientation, queuing, routing (including point-

to-point and publish-and-subscribe), reliability and

security. AMQP mandates the behaviour of the

messaging provider and client to the extent that

implementations from different vendors are truly

interoperable, in the same way as SMTP, HTTP, FTP,

etc. have created interoperable systems. Previous

attempts to standardize middleware have happened at

the API level (e.g. JMS) and this did not create

interoperability. Unlike JMS, which merely defines an

API, AMQP is a wire-level protocol.

Reliable messaging at this level is likely a

requirement for Intercloud Protocol.

10. Sequencing the Protocols in the Use

Cases

Now, let us put together the protocols into

implementing the use cases we have chosen. First we

will look at the use case of a VM moving from one

cloud to another, called Dynamic Workload Migration.

Figure 5. Virtual Machine Mobility and Instantiation

In Figure 5 each of the areas of standards in Figure 4

are referenced. It is easy to see that even with the long

list of protocols we have identified not every case has

been covered

The next use case covers storage interoperability and

federation, which is actually a special case of services

interoperability and federation:

Figure 6. Services Interoperability and Federation

Here we realize that in the conversation between

clouds, if one knows the service in question is specific

and always the same between clouds, for example

storage, that is a simplifying assumption. When one

cloud asks to find if the service description on another

cloud meets the constraints of the first cloud’s interest, it

must have a dialog based on a resource description

language and a constraints query. As can be seen we are

now investigating RDF and OWL [48] for this.

11. Conclusion

More and more service providers are constructing

these new, planet-scale virtualized datacenters which are

popularly called Cloud Computing. As software and

expertise becomes more available, enterprises and

smaller service providers are also building Cloud

Computing implementations. Active work needs to

occur to create interoperability amongst the varied

implementations of these Clouds. From the lower level

challenges around network addressing, to multicast

enablement, to virtual machine mechanics, to the higher

level interoperability desires of services, this is an area

deserving of much progress and will require the

cooperation of several large industry players.

Our initial work shows that, identifying a profile of

protocols and formats is one part of the interoperability

puzzle. This paper has for the first time enumerated a

candidate base set of those and called them collectively

“Intercloud Protocols”. Our work also shows that, a set

of common mechanisms must also be present, both

inside the Clouds, and in-between the Clouds. This

paper has for the first time enumerated a candidate base

set of those and called them collectively “Intercloud

Root”.

Figure 7. The Intercloud Vision

We will continue our work in showing disparate

Cloud Computing instances operating together through

Intercloud Protocols using an Intercloud Root

mechanism.

In particular, future work will also include a more

detail analysis and recommendation around Grid

capabilities in Cloud Computing.

12. References

[1] Amazon Web Services at http://aws.amazon.com/

[2] James Murty, Programming Amazon Web Services; S3,

EC2, SQS, FPS, and SimpleDB, O’Reilly Press, 2008.

[3] Google AppEngine at http://code.google.com/appengine/

[4] Eugene Ciurana, Developing with Google App Engine,

Firstpress, 2009.

[5] Microsoft Azure, at

http://www.microsoft.com/azure/default.mspx

[6] VMware VCloud Initiative at

http://www.vmware.com/technology/cloud-computing.html

[7] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano

Obertelli, Sunil Soman, Lamia Youseff, Dmitrii Zagorodnov,

The Eucalyptus Open-source Cloud-computing System,

Proceedings of Cloud Computing and Its Applications,

Chicago, Illinois (October 2008)

[8] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano

Obertelli, Sunil Soman, Lamia Youseff, Dmitrii Zagorodnov,

Eucalyptus: A Technical Report on an Elastic Utility

Computing Architecture Linking Your Programs to Useful

Systems, UCSB Computer Science Technical Report Number

2008-10 (August 2008)

[9] IEEE 802-2001 Standard for Local and Metropolitan Area

Networks: Overview and Architecture, at

http://standards.ieee.org/getieee802/802.html

[10] Domain Names – Concepts and Facilities, and related

other RFCs, at http://www.ietf.org/rfc/rfc1034.txt

http://aws.amazon.com/
http://code.google.com/appengine/
http://www.microsoft.com/azure/default.mspx
http://www.vmware.com/technology/cloud-computing.html
http://standards.ieee.org/getieee802/802.html
http://www.ietf.org/rfc/rfc1034.txt

[11] Rivest, R.; A. Shamir; L. Adleman, A Method for

Obtaining Digital Signatures and Public-Key Cryptosystems,

Communications of the ACM 21 (2) 1978: pp.120–126,

http://theory.lcs.mit.edu/~rivest/rsapaper.pdf

[12] Intel 64 and IA-32 Architectures Software Developer's

Manuals, from

http://developer.intel.com/products/processor/manuals/index.h

tm

[13] Guidelines for Fibre Channel Use of the Organizationally

Unique Identifier, at

http://standards.ieee.org/regauth/oui/tutorials/fibreformat.html

[14] Address Allocation for Private Internets, and related other

RFCs, at http://tools.ietf.org/html/rfc1918

[15] IEEE 802.1Q - Virtual LANs at

http://www.ieee802.org/1/pages/802.1Q.html

[16] A Border Gateway Protocol 3 (BGP-3), and related other

RFCs, at http://tools.ietf.org/html/rfc1267

[17] OSPF Version 2, and related RFCs at

http://www.ietf.org/rfc/rfc1583.txt

[18] Guidelines for creation, selection, and registration of an

Autonomous System (AS), and related other RFCs at

http://tools.ietf.org/html/rfc1930

[19] Unique Local IPv6 Unicast Addresses, and related other

RFCs, at http://tools.ietf.org/html/rfc4193

[20] IP Mobility Support for IPv4, revised, at

http://www.ietf.org/rfc/rfc3344.txt

[21] Mobility Support in IPv6, at

http://www.ietf.org/rfc/rfc3775.txt

[22] Enhanced Route Optimization for Mobile IPv6, at

http://www.ietf.org/rfc/rfc4866.txt

[23] Carlos J. Bernardos, Ignacio Soto, and María Calderón,

IPv6 Network Mobility, The Internet Protocol Journal, Volume

10, No. 2, June 2007

[24] Locator/ID Separation Protocol (LISP), at

http://tools.ietf.org/html/draft-farinacci-lisp-10

[25] Uniform Resource Identifiers (URI): Generic Syntax, and

related other RFCs, at http://www.ietf.org/rfc/rfc2396.txt

[26] Lightweight Directory Access Protocol (LDAP);

Technical Specification Road Map, and related other RFCs at

http://tools.ietf.org/html/rfc4510

[27] [MS-ADTS]: Active Directory Technical Specification, at

http://msdn.microsoft.com/en-us/library/cc200343.aspx

[28] The Kerberos Network Authentication Service (V5), and

related other RFCs at http://tools.ietf.org/html/rfc4120

[29] Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile, and related other

RFCs at http://tools.ietf.org/html/rfc3280

[30] The FreeIPA Project at http://freeipa.org

[31] Extensible Messaging and Presence Protocol (XMPP):

Core, and related other RFCs at

http://xmpp.org/rfcs/rfc3920.html

[32] XMPP Standards Foundation at http://xmpp.org/

[33] virt-image(5) - Linux man page, at

http://linux.die.net/man/5/virt-image

[34] Virtualization Management (VMAN) Initiative,

Distributed Management Task Force, Inc. at

http://www.dmtf.org/standards/mgmt/vman/

[35] see http://xml.coverpages.org/ni2007-09-11-a.html

[36] virt-convert - modular conversion tool to convert between

virtual machine formats(currently supports conversion

between vmware, virt-image, and AMI formts, at

http://thincrust.org/tooling.html

[37] VMware Infrastructure SDK, at

http://www.vmware.com/support/developer/vc-sdk/

[38] Libvirt virtualization API project, at http://libvirt.org/

[39] Host Extensions for IP Multicasting, and related other

RFCs at http://www.ietf.org/rfc/rfc1112.txt

[40] Ohmori, M., Okamura, K., Araki, K., Design of scalable

interdomain IP multicast architecture, Proceedings. 15th

International Conference on Information Networking, 2001.

[41] Interdomain Multicast Solutions Guide , Cisco Press

Networking Technology Series., Cisco Systems 2004

[42] LISP for Multicast Environments, at

http://tools.ietf.org/html/draft-farinacci-lisp-multicast-01

[43] D. Mills, “RFC 1305 Network Time Protocol (Version 3)

Specification, Implementation and Analysis.” IETF March

1992

[44] IEEE Std. 1588-2004 “Precision clock synchronization

protocol for networked measurement and control systems”,

2004, TC9-Technical Committee on Sensor Technology of the

IEEE I&M Society

[45] Eidson, John; Garner, Geoffrey M.; Mackay, John;

Skendzic, Veselin; “Provision of Precise Timing via IEEE

1588 Application Interfaces”, IEEE International Symposium

on Precision Clock Synchronization for Measurement, Control

and Communication, 2007. ISPCS 2007. 1-3 Oct. 2007

Page(s):1 – 6

[46] Lee, Kang; Song, Eugene; “Object-oriented Model for

IEEE 1588 Standard”, IEEE International Symposium on

Precision Clock Synchronization for Measurement, Control

and Communication, 2007. ISPCS 2007., 1-3 Oct. 2007

Page(s): 7 – 12

[47] Advanced Message Queuing Protocol, at

http://jira.amqp.org

[48] W3C Semantic Web Activity, at

http://www.w3.org/2001/sw/

http://theory.lcs.mit.edu/~rivest/rsapaper.pdf
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://standards.ieee.org/regauth/oui/tutorials/fibreformat.html
http://tools.ietf.org/html/rfc1918
http://www.ieee802.org/1/pages/802.1Q.html
http://tools.ietf.org/html/rfc1267
http://www.ietf.org/rfc/rfc1583.txt
http://tools.ietf.org/html/rfc1930
http://tools.ietf.org/html/rfc4193
http://www.ietf.org/rfc/rfc3344.txt
http://www.ietf.org/rfc/rfc3775.txt
http://www.ietf.org/rfc/rfc4866.txt
http://tools.ietf.org/html/draft-farinacci-lisp-10
http://www.ietf.org/rfc/rfc2396.txt
http://tools.ietf.org/html/rfc4510
http://msdn.microsoft.com/en-us/library/cc200343.aspx
http://tools.ietf.org/html/rfc4120
http://tools.ietf.org/html/rfc3280
http://freeipa.org/
http://xmpp.org/rfcs/rfc3920.html
http://xmpp.org/
http://linux.die.net/man/5/virt-image
http://www.dmtf.org/standards/mgmt/vman/
http://xml.coverpages.org/ni2007-09-11-a.html
http://thincrust.org/tooling.html
http://www.vmware.com/support/developer/vc-sdk/
http://libvirt.org/
http://www.ietf.org/rfc/rfc1112.txt
http://tools.ietf.org/html/draft-farinacci-lisp-multicast-01
http://jira.amqp.org/
http://www.w3.org/2001/sw/

