
1

Using XMPP as a transport in Intercloud Protocols

David Bernstein

Huawei Technologies, USA.

dbernstein@huawei.com

Deepak Vij

Cloud Strategy Partners, LLC

deepak@cloudstrategypartners.com

Pre-Acceptance Submission

�OT FOR PUBLICATIO�

As Submitted to:

2nd USE�IX Workshop on Hot Topics in Cloud Computing (HotCloud '10)

June 22, 2010, Boston, MA

2

Using XMPP as a transport in Intercloud Protocols

David Bernstein

Huawei Technologies, USA.

dbernstein@huawei.com

Deepak Vij

Cloud Strategy Partners, LLC

deepak@cloudstrategypartners.com

Abstract

Cloud Computing is a term applied to large, hosted datacenters, usually geographically distributed, which offer various

computational services on a “utility” basis. Most typically the configuration and provisioning of these datacenters, as far

as the services for the subscribers go, is highly automated, to the point of the service being delivered within seconds of the

subscriber request. Additionally, the datacenters typically use hypervisor based virtualization as a technique to deliver

these services. The concept of a cloud operated by one service provider or enterprise interoperating with a clouds

operated by another is a powerful idea. So far that is limited to use cases where code running on one cloud explicitly

references a service on another cloud. There is no implicit and transparent interoperability. This interoperability should

be more than cloud to cloud, it should embody 1-to-many and many-to-many models. Working groups have proposed

building a layered set of protocols to solve this interoperability challenge called “Intercloud Protocols”. Point to Point

protocols such as HTTP are not suitable beyond 1-to-1 models, therefore the discussions around many-to-many

mechanisms have been proposed, including XMPP. This paper investigates and details the use of XMPP in Intercloud

protocols and concludes that logically it is a perfectly suited choice.

1. Introduction

Cloud Computing has emerged recently as a label for

a particular type of datacenter. For the purposes of this

paper, we define Cloud Computing as a datacenter/s

which:

1. May be hosted by anyone; an enterprise, a service

provider, or a government.

2. Implement a pool of computing resources and

services which are shared amongst subscribers.

3. Charge for resources and services using an “as

used” metered and/or capacity based model.

4. Are usually geographically distributed, in a manner

which is transparent to the subscriber (unless they

explicitly ask for visibility of that).

5. Are automated in that the provisioning and

configuration (and de-configuration and un-

provisioning) of resources and services occur on a

“self service” basis, usually programmatic request

of the subscriber, occur in an automated way with

no human operator assistance, and are delivered in

one or two orders of seconds.

6. Resources and services are delivered virtually, that

is, although they may appear to be physical (servers,

disks, network segments, etc) they are actually

virtual implementations of those on an underlying

physical infrastructure which the subscriber never

sees.

7. The physical infrastructure changes rarely. The

virtually delivered resources and services are

changing constantly.

8. Resources and services may be of a physical

metaphor (servers, disks, network segments, etc) or

they may be of an abstract metaphor (blob storage

functions, message queue functions, email functions,

multicast functions, all of which are accessed by

running of code or script to a set of API’s for these

abstract services). These may be intermixed.

Cloud Computing services as defined above are best

exemplified by the Amazon Web Services (AWS) [1][2]

or Google AppEngine [3][4]. Both of these systems

exhibit all eight characteristics as detailed above.

Various companies are beginning to offer similar

services, such as the Microsoft Azure Service [5], and

software companies such as VMware [6] and open

source projects such as UCSB Eucalyptus [7][8] are

creating software for building a cloud service.

3

In case 8, where the resources and services are of a

physical metaphor, the cloud is said to be exposing

“Infrastructure as a Service”, or IaaS. In the last case

described above (number 8), where the resources and

services are of an abstract metaphor, the cloud is said to

be exposing “Platform as a Service”, or PaaS. A PaaS

cloud looks like a remote, virtual, distributed

implementation of a managed code container, or

“Application Server”, similar to J2EE [9] or .NET [10].

The terms are well accepted now [11].

Use Cases and Scenarios for Cloud IaaS and PaaS

interoperability [12][13] have been detailed in the

literature along with the challenges around actually

implementing standards-based Intercloud federation and

hybrid clouds. Work detailing high level architectures

for Intercloud interoperability were proposed next

[14][15]. More recently, specific implementation

approaches for Intercloud protocols [16][17] have been

proposed, including specifically proposing XMPP

[18][19] as a transport protocol within the Intercloud

protocol suite.

This paper continues that work where we specifically

create XMPP code of Intercloud functions, to validate

the suitability of XMPP at a logical level and to explore

the suitability at an implementation level.

2. Intercloud Topology

The vision and topology for the Intercloud we will

refer to [12][13] is as follows. At the highest level, the

analogy is with the Internet itself: in a world of TCP/IP

and the WWW, data is ubiquitous and interoperable in a

network of networks known as the “Internet”; in a world

of Cloud Computing, content, storage and computing is

ubiquitous and interoperable in a network of Clouds

known as the “Intercloud”; this is illustrated in Figure 1.

Figure 1. The Intercloud Vision

The reference topology for realizing this vision is

modeled after the public Internet infrastructure. Again,

using the generally accepted terminology

[11][12][13][14][15][18][19], there are Public Clouds,

which are analogous to ISP’s and Service Providers

offering routed IP in the Internet world. There are

Private Clouds which is simply a Cloud which an

organization builds to serve itself. There are Intercloud

Exchanges (analogous to Internet Exchanges and

Peering Points) where clouds can interoperate, and there

is an Intercloud Root, containing services such as

Naming Authority, Trust Authority, Directory Services,

and other “root” capabilities. It is envisioned that the

Intercloud root is of course physically not a single entity,

a global replicating and hierarchical system similar to

DNS [20] would be utilized. All elements in the

Intercloud topology contain some gateway capability

analogous to an Internet Router, implementing

Intercloud protocols in order to participate in Intercloud

interoperability. We call these Intercloud Gateways. The

entire topology is detailed in Figure 2.

Intercloud Root

Intercloud

Exchanges

Public

Clouds

Private

Clouds

Figure 2. Reference Intercloud Topology

 The Intercloud Gateways would provide mechanism

for supporting the entire profile of Intercloud protocols

and standards.

The Intercloud Root and Intercloud Exchanges

would facilitate and mediate the initial Intercloud

negotiating process among Clouds. It is this Presence

and Messaging capability we are considering in this

paper. Once the initial negotiating process is completed,

each of these Cloud instance would collaborate directly

with each other via a protocol and transport appropriate

for the interoperability action at hand; for example, a

reliable protocol might be needed for transaction

integrity, or a high speed streaming protocol might be

needed optimized for data movement over a particular

link. However, if the Cloud instances needed a signaling

to control that collaboration process, we believe that the

4

requirements for that are the same as the initial

negotiating phase. Thus, we consider a protocol for both

cases of the “control plane” of presence and messaging.

3. XMPP Architectural Considerations

As detailed in earlier work [12][13], cloud instances

must be able to dialog with each other. One cloud must

be able to find one or more other clouds, which for a

particular interoperability scenario is ready, willing, and

able to accept an interoperability transaction with and

furthermore, exchanging whatever subscription or usage

related information which might have been needed as a

pre-cursor to the transaction. Thus, an Intercloud

Protocol for presence and messaging needs to exist

which can support the 1-to-1, 1-to-many, and many-to-

many Cloud to Cloud use cases.

Extensible Messaging and Presence Protocol

(XMPP) [18][19] is exactly such a protocol. XMPP is a

set of open XML technologies for presence and real-

time communication developed by the Jabber open-

source community in 1999, formalized by the IETF in

2002-2004, continuously extended through the standards

process of the XMPP Standards Foundation. XMPP

supports presence, structured conversation, lightweight

middleware, content syndication, and generalized

routing of XML data.

For Intercloud protocols, XMPP is a viable control

plane presence and dialog protocol. XMPP root services

would be located in the Intercloud Root in the topology

explained above.

XMPP defines protocols for communicating between

groups of entities which register with an XMPP server.

Registration is dynamic and provides the basis for

Presence. In a large implementation, such as the global

Intercloud envisioned herein, XMPP servers are

connected together. This is identical to the way service

providers connect XMPP servers together already

supporting cross-domain Instant Messaging. In this way,

XMPP facilitates both presence and many-to-many

messaging across service provider domains. XMPP

messages are extensible, and can be used to carry

messages of different types. For example, an XMPP

Message can carry Instant Messaging (IM) type traffic.

We will be using a Cloud extension to XMPP.

XMPP servers support encrypted communication

(SASL (Simple Authentication and Security Layer) and

TLS (Transport Layer Security)) with the option to

restrict XMPP servers to accept only encrypted client-

to-server and server-to-server connections.

4. XMPP Services Framework

First, we must consider how to construct a Services

Framework layer on top of XMPP, analogous to the

HTTP-based Web service technologies, like the Simple

Object Access Protocol (SOAP) and REpresentational

State Transfer (REST) services. Today these are the

most common technologies for interfaces on a services

framework.

However, the intrinsically synchronous HTTP

protocol is unsuitable for time-consuming operations,

like computationally demanding database lookups or

calculations, and server timeouts are common obstacles.

A very common workaround is to implement a ticketing

mechanism in the service, where the client receives a

ticket that can be used to repetitively poll for results and

is highly inefficient.

XMPP based services, on the other hand, are capable

of asynchronous communication. This implies that

clients do not have to poll repetitively for status, but the

service sends the results back to the client upon

completion. As an alternative to RESTful or SOAP

service interfaces, XMPP based services are ideal for

lightweight service scenarios.

To address this issue, we leverage a series of XMPP

extensions (XEP series) defined by XMPP standards

foundation. One of these extensions is XEP-0244 [21].

Extension XEP-0244 provides a “services” framework

on top of base XMPP, named IO Data, which was

designed for sending messages from one computer to

another, providing a transport for remote service

invocation and attempting to overcome the problems

with SOAP & REST. A reference implementation for

the IO Data XEP, XMPP Web Services for Java (xws4j),

is already in place and available [22], which we are

using.

5. XMPP Encryption & Authentication

XMPP includes a method for securing the XML

stream from tampering and eavesdropping. This channel

encryption method makes use of the Transport Layer

Security (TLS) protocol [23], along with a

“STARTTLS” extension that is modeled after similar

extensions for the IMAP [24], and POP3 [25] protocols.

Clouds use TLS to secure the streams prior to

attempting the completion of SASL based authentication

negotiation. SASL is a method for authenticating a

stream by means of an XMPP-specific profile of the

protocol [26]. SASL provides a generalized method for

adding authentication support to connection-based

protocols. Currently, the following authentications

5

methods are supported by XMPP-specific profile of

SASL protocol: “DIGEST-MD5”, “CRAM-MD5”,

“PLAIN”, and “ANONYMOUS”.

SAML [27] provides authentication in a federated

environment. Currently, there is no support for SAML

in XMPP-specific profile of SASL protocol. However,

there is a draft proposal published that specifies a SASL

mechanism for SAML 2.0 that allows the integration of

existing SAML Identity Providers with applications

using SASL.

The following sample shows the data flow for a

Cloud securing a stream to an Intercloud Root, using

STARTTLS. It also shows SAML2.0 based

authentication steps.

Step 1: Cloud starts stream to Intercloud Root:
<stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='intercloudexchg.com'
 version='1.0'>

Step 2: Intercloud Root responds by sending a stream

tag to client:
<stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='cloud1_id1'
 from='intercloudexchg.com'
 version='1.0'>

Step 3: Intercloud Root sends the STARTTLS extension

to Cloud:
<stream:features>
 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
 <required/>
 </starttls>
</stream:features>

Step 4: Cloud sends the STARTTLS command to

Intercloud Root:
<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

Step 5: Intercloud Root informs Cloud that it is allowed

to proceed:
<proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

Step 5 (alt): Intercloud Root informs Cloud that TLS

negotiation has failed and closes both stream and TCP

connection:
<failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
</stream:stream>

Step 6: Cloud and Intercloud Root attempt to complete

TLS negotiation over the existing TCP connection.

Step 7: If TLS negotiation is successful, Cloud initiates

a new stream to Intercloud Root:

<stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='intercloudexchg.com'
 version='1.0'>

Step 7 (alt): If TLS negotiation is unsuccessful,

Intercloud Root closes TCP connection.

Step 8: Intercloud Root responds by sending a stream

header to Cloud along with any available stream

features:
<stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 from='intercloudexchg.com'
 id=' cloud1_id2'
 version='1.0'>
<stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-
sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism> CRAM-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 <mechanism>ANONYMOUS</mechanism>
 <mechanism>EXTERNAL</mechanism>
 <mechanism>SAML20</mechanism>
 </mechanisms>
</stream:features>

Step 9: Cloud continues with SASL based authentication

negotiation.

Step 10: Cloud selects an authentication mechanism:
<auth xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’
mechanism=’SAML20’/>

Step 11: Intercloud Root sends a BASE64 [28] encoded

challenge to Cloud in the form of an HTTP Redirect to

the SAML assertion consumer service with the SAML

Authentication Request as specified in the redirection

URL.

Step 12: Cloud sends a BASE64 encoded empty

response to the challenge:
<response xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’> =
</response>

Step 13: The Cloud now sends the URL to the local

Intercloud Gateway for processing. The Intercloud

Gateway engages, just like a browser would, in a normal

SAML authentication flow (external to SASL), like

redirection to the Identity Provider. Once authenticated,

the Intercloud Gateways is passed back to the Cloud

who sends the AuthN XMPP response to the Intercloud

Root, containing the subject-identifier and the “jid” as

an attribute.

Step 14: Intercloud Gateway informs Cloud of

successful authentication:
<success xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’/>

6

Step 14 (alt): Intercloud Gateway informs Cloud of

failed authentication:
<failure xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’>
<temporary-auth-failure/>
</failure>
</stream:stream>

6. XMPP based Service Invocation

Once the Cloud has now secured a connection to the

Intercloud root, it can look for a suitable other Cloud

with which to interoperate. It will either interoperate

through an Intercloud Exchange, or directly Cloud to

Cloud, as the case may be.

It was envisioned [17] that the way a Cloud would

find the appropriate services is by leveraging a catalog

of available resources published in a directory residing

in the Intercloud Root. The Cloud’s resource needs

would be specified similarly, and a query would match

the availability to the need.

The technologies to use for this are based in the

Semantic Web [29] which provides for a way to add

“meaning and relatedness” to objects on the Web, by

way of specifying Ontologies.

For the Intercloud, we use this technique to specify

resources such as storage, computing, and all the other

possible services which Cloud both expose and consume.

RDF [30] is a way to specify such resources, and

SPARQL [31] is a query/matching system for RDF.

Later work of ours will expand specifically on the RDF

and SPARQL areas of the Intercloud problem, but for

now let us detail within XMPP, how one would go about

invocation of a SPARQL query with an Intercloud Root.

The following service request invokes a SPARQL

query over the XMPP connection to the Intercloud Root,

in order to apply certain preferences and constraints to

the resources in the computing semantics catalog for

determining if the service description on another Cloud

meets the constraints of the first Cloud’s interest. Again,

this uses IO Data XEP, XMPP Web Services for Java

(xws4j):
<iq type='set'
 from='user@cloud1.org'
 to='service.intercloudexchg.com'
 id='cloud1_id1'>
 <command xmlns=
 'http://jabber.org/protocol/commands'
 node='constraint_catalog_resources'
 action='execute'>
 <iodata xmlns=
 'urn:xmpp:tmp:io-data' type='input'>
 <in>
 <constraints xmlns='http://www.csp/resOntology'>

 <constraint>
 <attribute>availabilityQuanity </attribute>

 <value>99.999</value>
 </constraint>

 <constraint>
 <attribute>replicationFactor</attribute>
 <value>5</value>
 </constraint>

 <constraint>
 <attribute>tierCountries</attribute>
 <value>JAPAN</value>
 </constraint>

 <constraint>
 <attribute>StorageReplicationMethod
 </attribute>
 <value>AMQP</value>
 </constraint>

 <constraint>
 <attribute>InterCloudStorageAccess
 </attribute>
 <value>NFS</value>
 </constraint>

 </constraints>
 </in>
 </iodata>
 </command>
</iq>

The above service invocation request results into the

following result set:
<iq type='result'
 from='service.intercloudexchg.com'
 to='user@cloud1.org'
 id='cloud1_id1'>
 <command xmlns=
 'http://jabber.org/protocol/commands'
 sessionid='RPC-SESSION-0000001'
 node='constraint_catalog_resources'
 status='completed'>
 <iodata xmlns=
 'urn:xmpp:tmp:io-data' type='output'>
 <out>
 <matchingClouds
 xmlns=' http://www.csp/resOntology'>
 <cloudName>cloud2</cloudName>
 <cloudName>cloud5</cloudName>
 </matchingClouds>
 </out>
 </iodata>
 </command>
</iq>

The example shows how the service invocation

works inside of an XMPP conversation.

7. XMPP based Presence & Dialog

Next, assume that the requesting cloud has found a

target cloud with which to interwork. It must now turn

directly to the target cloud and dialog with it. This last

section describes such a cloud-to-cloud presence and

dialog scenario.

The code sample is based on Google AppEngine

XMPP JAVA API set [32]. The following code sample

tests for a service availability then sends a message as

part of the collaboration dialog:

7

// ...
 JID jid = new JID("user@cloud2.com");
 String msgBody = "Cloud 2, I would like to use
your resources for storage replication using AMQP over
UDT protocol.";
 Message msg = new MessageBuilder()
 .withRecipientJids(jid)
 .withBody(msgBody)
 .build();

 boolean messageSent = false;
 XMPPService xmpp =
XMPPServiceFactory.getXMPPService();
 if (xmpp.getPresence(jid).isAvailable()) {
 SendResponse status =
xmpp.sendMessage(msg);
 messageSent =
(status.getStatusMap().get(jid) ==
SendResponse.Status.SUCCESS);
 }

 if (!messageSent) {
 // Send an email message instead...
 }

Step 2: The following code sample shows how the

recipient Cloud responds back to the chat message as

part of the collaboration dialog.
/* Handler class for all XMPP activity. */
public class XmppReceiverServlet extends HttpServlet
{
 private static final XMPPService xmppService =
 XMPPServiceFactory.getXMPPService();

 public void doPost(HttpServletRequest request,
HttpServletResponse response)
 throws IOException {
 Message message =
xmppService.parseMessage(request);

 Message reply = new MessageBuilder()
 .withRecipientJids(message.getFromJid())
 .withMessageType(MessageType.NORMAL)
 .withBody("Cloud 1, please go ahead and use my
resources for storage replication using AMQP/UDT
protocol.")
 .build();

 xmppService.sendMessage(reply);
 }

8. Conclusions and Future Work

We have gone into some detail to test the proposal

that XMPP is a suitable control plane protocol for

Intercloud. We tried a variety of different techniques

along the way:

• Fitting XMPP into an Intercloud Topology

• Securing the XMPP conversation using TLS

• Authentication over XMPP using SAML

• Service Invocation over XMPP using IO Data

XEP, XMPP Web Services for Java (xws4j)

• RDF and SPARQL within XMPP

• XMPP Java API to a Cloud Service

The conclusion is that for each of these techniques

we found XMPP to be flexible and usable. There are

also widespread industry techniques for using XMPP

available. We believe we have confirmed XMPP as a

core Intercloud transport protocol.

As to continuing work, we are continuing to develop

the suite of Intercloud protocols. Our next work will be

to elaborate on the RDF Ontology definitions and

SPARQL query work for Cloud Computing resources,

with an eye towards IaaS (Storage) interoperability first.

With the XMPP approach and the RDF Ontology we

should be able to demonstrate a “Simple Storage

Replication Protocol” for Intercloud next.

9. References

[1] Amazon Web Services at http://aws.amazon.com/

[2] James Murty, Programming Amazon Web Services;

S3, EC2, SQS, FPS, and SimpleDB, O’Reilly Press,

2008.

[3] Google AppEngine at

http://code.google.com/appengine/

[4] Eugene Ciurana, Developing with Google App

Engine, Firstpress, 2009.

[5] Microsoft Azure, at

http://www.microsoft.com/azure/default.mspx

[6] VMware VCloud Initiative at

http://www.vmware.com/technology/cloud-

computing.html

[7] Nurmi D., Wolski R., Grzegorczyk C., Obertelli G.,

Soman S., Youseff L., Zagorodnov D., The Eucalyptus

Open-source Cloud-computing System, Proceedings of

Cloud Computing and Its Applications, Chicago, Illinois

(October 2008)

[8] Nurmi D., Wolski R., Grzegorczyk C., Obertelli G.,

Soman S., Youseff L., Zagorodnov D., Eucalyptus: A

Technical Report on an Elastic Utility Computing

Architecture Linking Your Programs to Useful Systems,

UCSB Computer Science Technical Report Number

2008-10 (August 2008)

[9] JSR 88: Java Enterprise Edition Application

Deployment at http://jcp.org/en/jsr/detail?id=88

[10] Microsoft .NET at http://www.microsoft.com/net/

[11] Youseff, L. and Butrico, M. and Da Silva, D.,

Toward a unified ontology of cloud computing, GCE’08

Grid Computing Environments Workshop, 2008.

[12] Lijun Mei, W.K. Chan, T.H. Tse, A Tale of Clouds:

Paradigm Comparisons and Some Thoughts on

Research Issues, APSCC pp.464-469, 2008 IEEE Asia-

Pacific Services Computing Conference, 2008

[13] Cloud Computing Use Cases Google Group

(Public), at http://groups.google.com/group/cloud-

computing-use-cases,

http://www.scribd.com/doc/18172802/Cloud-

Computing-Use-Cases-Whitepaper , accessed March

2010

8

[14] Buyya, R. and Pandey, S. and Vecchiola, C.,

Cloudbus toolkit for market-oriented cloud computing,

Proceeding of the 1st International Conference on Cloud

Computing (CloudCom), 2009

[15] Yildiz M, Abawajy J, Ercan T., Bernoth A., A

Layered Security Approach for Cloud Computing

Infrastructure, ISPAN, pp.763-767, 10th International

Symposium on Pervasive Systems, Algorithms, and

Networks, 2009

[16] Bernstein, D., Ludvigson, E., Sankar, K., Diamond,

S., and Morrow, M., Blueprint for the Intercloud -

Protocols and Formats for Cloud Computing

Interoperability, ICIW '09. Fourth International

Conference on Internet and Web Applications and

Services, pp. 328-336, 2009

[17] Bernstein, D., Keynote 2: The Intercloud: Cloud

Interoperability at Internet Scale, NPC, pp.xiii, 2009

Sixth IFIP International Conference on Network and

Parallel Computing, 2009

[18] Extensible Messaging and Presence Protocol

(XMPP): Core, and related other RFCs at

http://xmpp.org/rfcs/rfc3920.html

[19] XMPP Standards Foundation at http://xmpp.org/

[20] Domain �ames – Concepts and Facilities, and

related other RFCs, at

http://www.ietf.org/rfc/rfc1034.txt

[21] XEP-0244: IO Data, at

http://xmpp.org/extensions/xep-0244.html, accessed

March 2010

[22] XMPP Web Services for Java (XWS4J), at

http://sourceforge.net/projects/xws4j/ , accessed March

2010

[23] The Transport Layer Security (TLS) Protocol, at

http://tools.ietf.org/html/rfc5246

[24] Internet Message Access Protocol (IMAP), at

http://tools.ietf.org/search/rfc3501

[25] Post Office Protocol (POP3), at

http://tools.ietf.org/html/rfc1939

[26] Simple Authentication and Security Layer (SASL),

at http://tools.ietf.org/html/rfc4422

[27] Security Assertion Markup Language (SAML), at

http://saml.xml.org/saml-specifications

[28] The Base16, Base32, and Base64 Data Encodings,

at http://www.ietf.org/rfc/rfc4648.txt

[29] W3C Semantic Web Activity, at

http://www.w3.org/2001/sw/

[30] Resource Description Framework (RDF), at

http://www.w3.org/RDF/

[31] SPARQL Query Language for RDF, at

http://www.w3.org/TR/rdf-sparql-query/

[32] Google App Engine, The XMPP Java API, at

http://code.google.com/appengine/docs/java/xmpp/

